
30

Semaphores

As we know now1, one needs both locks and condition variables to
solve a broad range of relevant and interesting concurrency prob-
lems. One of the first people to realize this years ago was Edsger Di-
jkstra (though it is hard to know the exact history [GR92]), known
among other things for his famous “shortest paths” algorithm in
graph theory [D59], an early polemic on structured programming en-
titled “Goto Statements Considered Harmful” [D68a] (what a great
title!), and, in the case we will study here, the introduction of a pow-
erful and flexible synchronization primitive known as the semaphore
[D68b,D72]. Indeed, he invented this general semaphore as a single
primitive for all things related to synchronization; as you will see,
one can use semaphores as both locks and condition variables.

THE CRUX: HOW TO USE SEMAPHORES

How can we use semaphores instead of locks and condition vari-
ables? What is the definition of a semaphore? What is a binary
semaphore? Is it straightforward to build a semaphore out of locks
and condition variables? What about building locks and condition
variables out of semaphores?

1That is, assuming “we”, which is actually “you”, have been reading and paying
attention to the previous chapters. And even remembering a few things. You have,
right?!

1



2 SEMAPHORES

#include <semaphore.h>
sem_t s;
sem_init(&s, 0, 1);

Figure 30.1: Initializing A Semaphore

int sem_wait(sem_t *s) {
wait until value of semaphore s is greater than 0
decrement the value of semaphore s by 1

}

int sem_post(sem_t *s) {
increment the value of semaphore s by 1
if there are 1 or more threads waiting, wake 1

}

Figure 30.2: Semaphore: Definitions of Wait and Post

30.1 Semaphores: A Definition

A semaphore is as an object with an integer value that we can
manipulate with two routines (which we will call sem wait() and
sem post() to follow the POSIX standard). Because the initial value
of the semaphore determines its behavior, before calling any other
routine to interact with the semaphore, we must first initialize it to
some value, as the code in Figure 30.1 does.

In the figure, we declare a semaphore s and initialize it to the
value of 1 You can ignore the second argument to sem init() for
now; read the man page for details.

After a semaphore is initialized, we can call one of two functions

to interact with it, sem wait() or sem post()2. The behavior of
these two functions is seen in Figure 30.2.

For now, we are not concerned with the implementation of these
routines, which clearly requires some care; with multiple threads
calling into sem wait() and sem post(), there is the obvious need
for managing these critical sections with locks and queues similar to
how we previously built locks. We will now focus on how to use
these primitives; later we may discuss how they are built.

A couple of notes. First, we can see that sem wait() will ei-

2Historically, sem wait() was first called P() by Dijkstra (for the Dutch word “to
probe”) and sem post() was called V() (for the Dutch word “to test”). Sometimes,
people call them down and up, too. Use the Dutch versions to impress your friends.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 3

ther return right away (because the value of the semaphore was 1
or higher when we called sem wait()), or it will cause the caller to
suspend execution waiting for a subsequent post. Of course, multi-
ple calling threads may call into sem wait(), and thus all be queued
waiting to be woken. Once woken, the waiting thread will then
decrement the value of the semaphore and return to the user.

Second, we can see that sem post() does not ever suspend the
caller. Rather, it simply increments the value of the semaphore and
then, if there is a thread waiting to be woken, wakes 1 of them up.

You should not worry here about the seeming race conditions pos-
sible within the semaphore; assume that the modifications they make
to the state of the semaphore are all performed atomically (we will
soon use locks and condition variables to do just this).

30.2 Binary Semaphores (Locks)

We are now ready to use a semaphore. Our first use will be one
with which we are already familiar: using a semaphore as a lock.
Here is a code snippet:

sem_t m;
sem_init(&m, 0, X); // initialize semaphore to X; what should X be?

sem_wait(&m);
// critical section here
sem_post(&m);

Figure 30.3: A Binary Semaphore, a.k.a. a Lock

To build a lock, we simply surround the critical section of interest
with a sem wait()/sem post() pair. Critical to making this work,
though, is the initial value of the semaphore. What should it be?

If we look back at the definition of the sem wait() and sem post()
routines above, we can see that the initial value of the semaphore
should be 1. Imagine the first thread (thread 0) calling sem wait();
it will first wait for the value of the semaphore to be greater than 0,
which it is (the semaphore’s value is 1). It will thus not wait at all and
decrement the value to 0 before returning to the caller. That thread
is now free to enter the critical section. If no other thread tries to
acquire the lock while thread 0 is inside the critical section, when it
calls sem post(), it will simply restore the value of the semaphore

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



4 SEMAPHORES

void *
child(void *arg) {

printf("child\n");
// signal here: child is done
return NULL;

}

int
main(int argc, char *argv[]) {

printf("parent: begin\n");
pthread_t c;
Pthread_create(c, NULL, child, NULL);
// wait here for child
printf("parent: end\n");
return 0;

}

Figure 30.4: A Parent Waiting for its Child

to 1 (and not wake any waiting thread, because there are no waiting
threads).

The more interesting case arises when thread 0 holds the lock (i.e.,
it has called sem wait() but not yet called sem post()), and an-
other thread (thread 1, say) tries to enter the critical section by call-
ing sem wait(). In this case, thread 1 will find that the value of
the semaphore is 0, and thus wait (putting itself to sleep and relin-
quishing the processor). When thread 0 runs again, it will eventually
call sem post(), incrementing the value of the semaphore back to
1, and then wake the waiting thread 1, which will then be able to
acquire the lock for itself.

In this basic way, we are able to use semaphores as locks. Because
the value of the semaphore simply alternates between 1 and 0, this
usage is sometimes known as a binary semaphore. Yes, this is some-
thing you just have to remember; life is unfair that way sometimes.

30.3 Semaphores As Condition Variables

Semaphores are also useful when a thread wants to halt its own
progress waiting for something to change. For example, a thread
may wish to wait for a list to become non-empty, so that it can take
an element off of the list. In this pattern of usage, we often find a
thread waiting for something to happen, and a different thread mak-

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 5

ing that something happen and then signaling that it has indeed hap-
pened, thus waking the waiting thread. Because the waiting thread
(or threads, really) is waiting for some condition in the program to
change, we are using the semaphore as a condition variable.

A simple example is as follows. Imagine a thread creates another
thread and then wants to wait for it to complete its execution (Figure
30.4). When this program runs, what we would like to see here is the
following output:

parent: begin
child
parent: end

The question, then, is how to use a semaphore to achieve this ef-
fect, and is it turns out, it is relatively easy to understand (Figure
30.5). As you can see in the code, the parent simply calls sem wait()
and the child sem post() to wait for the condition of the child fin-
ishing its execution to become true. However, this raises the ques-
tion: what should the initial value of this semaphore be? (think about
it here, instead of reading ahead)

The answer, of course, is that the value of the semaphore should
be set to is the number 0. There are two cases to consider. First, let us
assume that the parent creates the child but the child has not run yet
(i.e., it is sitting in a ready queue but not running). In this case, the
parent will call sem wait() before the child has called sem post(),
and thus we’d like the parent to wait for the child to run. The only
way this will happen is if the value of the semaphore is not greater
than 0; hence, 0 as the initial value makes sense. When the child
finally runs, it will call sem post(), incrementing the value to 1 and
waking the parent, which will then return from sem wait() and
complete the program.

The second case occurs when the child runs to completion be-
fore the parent gets a chance to call sem wait(). In this case, the
child will first call sem post(), thus incrementing the value of the
semaphore from 0 to 1. When the parent then gets a chance to run, it
will call sem wait() and find the value of the semaphore to be 1; the
parent will thus decrement the value and return from sem wait()
without waiting, also achieving the desired effect.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



6 SEMAPHORES

sem_t s;

void *
child(void *arg) {

printf("child\n");
// signal here: child is done
sem_post(&s);
return NULL;

}

int
main(int argc, char *argv[]) {

sem_init(&s, 0, X); // what should X be?
printf("parent: begin\n");
pthread_t c;
Pthread_create(c, NULL, child, NULL);
// wait here for child
sem_wait(&s);
printf("parent: end\n");
return 0;

}

Figure 30.5: Parent Waiting for its Child with Semaphores

30.4 The Producer/Consumer (Bounded-Buffer) Problem

The next problem we will confront in this chapter is known as the
producer/consumer problem, or sometimes as the bounded buffer
problem [D72]. This problem is described in detail in the previous
chapter on condition variables; see there for details.

First Attempt

Our first attempt at solving the problem introduces two semaphores,
empty and full, which the threads will use to indicate when a
buffer entry has been emptied or filled, respectively. The code for
the put and get routines is in Figure 30.6, and our attempt at solving
the producer and consumer problem is in Figure 30.7.

In this example, the producer first waits for a buffer to become
empty in order to put data into it, and the consumer similarly waits
for a buffer to become filled before using it. Let us first imagine that
MAX=1 (there is only one buffer in the array), and see if this works.

Imagine again there are two threads, a producer and a consumer.
Let us examine a specific scenario on a single CPU. Assume the con-

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 7

int buffer[MAX];
int fill = 0;
int use = 0;

void put(int value) {
buffer[fill] = value; // line f1
fill = (fill + 1) % MAX; // line f2

}

int get() {
int tmp = buffer[use]; // line g1
use = (use + 1) % MAX; // line g2
return tmp;

}

Figure 30.6: The Put and Get Routines

sumer gets to run first. Thus, the consumer will hit line c1 in the fig-
ure above, calling sem wait(&full). Because full was initialized
to the value 0, the call will block the consumer and wait for another
thread to call sem post() on the semaphore, as desired.

Assume the producer then runs. It will hit line P1, thus calling
sem wait(&empty). Unlike the consumer, the producer will con-
tinue through this line, because empty was initialized to the value
MAX (in this case, 1). Thus, empty will be decremented to 0 and the
producer will put a data value into the first entry of buffer (line P2).
The producer will then continue on to P3 and call sem post(&full),
changing the value of the full semaphore from 0 to 1 and waking the
consumer (e.g., move it from blocked to ready).

In this case, one of two things could happen. If the producer con-
tinues to run, it will loop around and hit line P1 again. This time,
however, it would block, as the empty semaphore’s value is 0. If the
producer instead was interrupted and the consumer began to run,
it would call sem wait(&full) (line c1) and find that the buffer
was indeed full and thus consume it. In either case, we achieve the
desired behavior.

You can try this same example with more threads (e.g., multiple
producers, and multiple consumers). It should still work, or it is time
to go to sleep.

Let us now imagine that MAX is greater than 1 (say MAX = 10). For
this example, let us assume that there are multiple producers and
multiple consumers. We now have a problem: a race condition. Do
you see where it occurs? (take some time and look for it) If you can’t
see it, here’s a hint: look more closely at the put() and get() code.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



8 SEMAPHORES

sem_t empty;
sem_t full;

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

sem_wait(&empty); // line p1
put(i); // line p2
sem_post(&full); // line p3

}
}

void *consumer(void *arg) {
int i, tmp = 0;
while (tmp != -1) {

sem_wait(&full); // line c1
tmp = get(); // line c2
sem_post(&empty); // line c3
printf("%d\n", tmp);

}
}

int main(int argc, char *argv[]) {
// ...
sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init(&full, 0, 0); // ... and 0 are full
// ...

}
Figure 30.7: Adding the Full and Empty Conditions

OK, let’s understand the issue. Imagine two producers (Pa and
Pb) both calling into put() at roughly the same time. Assume pro-
ducer Pa gets to run first, and just starts to fill the first buffer entry
(fill = 0 at line f1). Before Pa gets a chance to increment the fill counter
to 1, it is interrupted. Producer Pb starts to run, and at line f1 it also
puts its data into the 0th element of buffer, which means that the old
data there is overwritten! This is a no-no; we don’t want any data
generated by a producer to be lost.

A Solution: Adding Mutual Exclusion

As you can see, what we’ve forgotten here is mutual exclusion. The
filling of a buffer and incrementing of the index into the buffer is a
critical section, and thus must be guarded carefully. So let’s use our
friend the binary semaphore and add some locks. Figure 30.8 shows
our attempt.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 9

sem_t empty;
sem_t full;
sem_t mutex;

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

sem_wait(&mutex); // line p0 (NEW LINE)
sem_wait(&empty); // line p1
put(i); // line p2
sem_post(&full); // line p3
sem_post(&mutex); // line p4 (NEW LINE)

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

sem_wait(&mutex); // line c0 (NEW LINE)
sem_wait(&full); // line c1
int tmp = get(); // line c2
sem_post(&empty); // line c3
sem_post(&mutex); // line c4 (NEW LINE)
printf("%d\n", tmp);

}
}

int main(int argc, char *argv[]) {
// ...
sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init(&full, 0, 0); // ... and 0 are full
sem_init(&mutex, 0, 1); // mutex=1 because it is a lock (NEW LINE)
// ...

}

Figure 30.8: Adding Mutual Exclusion (Incorrectly)
Now we’ve added some locks around the entire put()/get() parts

of the code, as indicated by the NEW LINE comments. That seems
like the right idea, but it also doesn’t work. Why? Deadlock. Why
does deadlock occur? Take a moment to consider it; try to find a case
where deadlock arises. What sequence of steps must happen for the
program to deadlock?

Avoiding Deadlock

OK, now that you figured it out, here is the answer. Imagine two
threads, one producer and one consumer. The consumer gets to run
first. It acquires the mutex (line c0), and then calls sem wait() on

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



10 SEMAPHORES

sem_t empty;
sem_t full;
sem_t mutex;

void *producer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

sem_wait(&empty); // line p1
sem_wait(&mutex); // line p1.5 (MOVED MUTEX HERE...)
put(i); // line p2
sem_post(&mutex); // line p2.5 (... AND HERE)
sem_post(&full); // line p3

}
}

void *consumer(void *arg) {
int i;
for (i = 0; i < loops; i++) {

sem_wait(&full); // line c1
sem_wait(&mutex); // line c1.5 (MOVED MUTEX HERE...)
int tmp = get(); // line c2
sem_post(&mutex); // line c2.5 (... AND HERE)
sem_post(&empty); // line c3
printf("%d\n", tmp);

}
}

int main(int argc, char *argv[]) {
// ...
sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...
sem_init(&full, 0, 0); // ... and 0 are full
sem_init(&mutex, 0, 1); // mutex=1 because it is a lock
// ...

}

Figure 30.9: Adding Mutual Exclusion (Correctly)

the full semaphore (line c1); because there is no data yet, this call
causes the consumer to block and thus yield the CPU; importantly,
though, the consumer still holds the lock.

A producer then runs. It has data to produce and if it were able to
run, it would be able to wake the consumer thread and all would be
good. Unfortunately, the first thing it does is call sem wait() on the
binary mutex semaphore (line p0). The lock is already held. Hence,
the producer is now stuck waiting too.

There is a simple cycle here. The consumer holds the mutex and is
waiting for the someone to signal full. The producer could signal full
but is waiting for the mutex. Thus, the producer and consumer are
each stuck waiting for each other: a classic deadlock.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 11

Finally, A Working Solution

To solve this problem, we simply must reduce the scope of the lock.
Figure 30.9 shows the final working solution. As you can see, we
simply move the mutex acquire and release to be just around the
critical section; the full and empty wait and signal code is left outside.
The result is a simple and working bounded buffer, a commonly-
used pattern in multithreaded programs. Understand it now; use it
later. You will thank us for years to come. Or at least, you will thank
us when the same question is asked on the final exam.

30.5 Reader-Writer Locks

Another classic problem stems from the desire for a more flexible
locking primitive that admits that different data structure accesses
might require different kinds of locking. For example, imagine a
number of concurrent list operations, including inserts and simple
lookups. While inserts change the state of the list (and thus a tra-
ditional critical section makes sense), lookups simply read the data
structure; as long as we can guarantee that no insert is on-going, we
can allow many lookups to proceed concurrently. The special type of
lock we will now develop to support this type of operation is known
as a reader-writer lock [CHP71]. The code for such a lock is available
in Figure 30.10.

The code is pretty simple. If some thread wants to update the
data structure in question, it should call the new pair of synchro-
nization operations: rwlock acquire writelock(), to acquire a
write lock, and rwlock release writelock(), to release it. In-
ternally, these simply use the writelock semaphore to ensure that
only a single writer can acquire the lock and thus enter the critical
section to update the data structure in question.

More interesting is the pair of routines to acquire and release read
locks. When acquiring a read lock, the reader first acquires lock
and then increments the readers variable to track how many read-
ers are currently inside the data structure. The important step then
taken within rwlock acquire readlock() occurs when the first
reader acquires the lock; in that case, the reader also acquires the
write lock by calling sem wait() on the writelock semaphore,
and then finally releasing the lock by calling sem post().

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



12 SEMAPHORES

typedef struct _rwlock_t {
sem_t lock; // binary semaphore (basic lock)
sem_t writelock; // used to allow ONE writer or MANY readers
int readers; // count of readers reading in critical section

} rwlock_t;

void rwlock_init(rwlock_t *rw) {
rw->readers = 0;
sem_init(&rw->lock, 0, 1);
sem_init(&rw->writelock, 0, 1);

}

void rwlock_acquire_readlock(rwlock_t *rw) {
sem_wait(&rw->lock);
rw->readers++;
if (rw->readers == 1)

sem_wait(&rw->writelock); // first reader acquires writelock
sem_post(&rw->lock);

}

void rwlock_release_readlock(rwlock_t *rw) {
sem_wait(&rw->lock);
rw->readers--;
if (rw->readers == 0)

sem_post(&rw->writelock); // last reader releases writelock
sem_post(&rw->lock);

}

void rwlock_acquire_writelock(rwlock_t *rw) {
sem_wait(&rw->writelock);

}

void rwlock_release_writelock(rwlock_t *rw) {
sem_post(&rw->writelock);

}

Figure 30.10: A Simple Reader-Writer Lock

Thus, once a reader has acquired a read lock, more readers will
be allowed to acquire the read lock too; however, any thread that
wishes to acquire the write lock will have to wait until all readers are
finished; the last one to exit the critical section calls sem post() on
“writelock” and thus enables a waiting writer to acquire the lock.

This approach works (as desired), but does have some negatives,
especially when it comes to fairness. In particular, it would be rela-
tively easy for readers to starve writers. More sophisticated solutions
to this problem exist; perhaps you can think of a better implementa-
tion? Hint: think about what you would need to do to prevent more
readers from entering the lock once a writer is waiting.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 13

Finally, it should be noted that reader-writer locks should be used
with some caution. They often add more overhead (especially with
more sophisticated implementations), and thus do not end up speed-
ing up performance as compared to just using simple and fast lock-
ing primitives [CB08]. Either way, they showcase once again how we
can use semaphores in an interesting and useful way.

TIP: SIMPLE AND DUMB CAN BE BETTER (HILL’S LAW)
You should never underestimate the notion that the simple and

dumb approach can be the best one. With locking, sometimes a sim-
ple spin lock works best, because it is easy to implement and fast.
Although something like reader/writer locks sounds cool, they are
complex, and complex can mean slow. Thus, always try the simple
and dumb approach first.

This idea, of appealing to simplcity, is found in many places. One
early source is Mark Hill’s dissertation [H87], which studied how
to design caches for CPUs. Hill found that simple direct-mapped
caches worked better than fancy set-associative designs (one reason
is that in caching, simpler designs enable faster lookups). As Hill
succinctly summarized his work: “Big and dumb is better.” And
thus we call this similar advice Hill’s Law.

30.6 The Dining Philosophers

One of the most famous concurrency problems posed, and solved,
by Dijkstra, is known as the dining philosopher’s problem [DHO71].
The problem is famous because it is fun and somewhat intellectually
interesting; however, its practical utility is low. However, its fame
forces its inclusion here; indeed, you might be asked about it on some
interview, and you’d really hate your OS professor if you miss that
question and don’t get the job. Conversely, if you get the job, please
feel free to send your OS professor a nice note, or some stock options.

The basic setup for the problem is this (as shown in Figure 30.11):
assume there are five “philosophers” sitting around a table. Between
each pair of philosophers is a single fork (and thus, five total). The
philosophers each have times where they think, and don’t need any
forks, and times where they eat. In order to eat, a philosopher needs

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



14 SEMAPHORES

P0

P1

P2

P3

P4

f0

f1

f2

f3

f4

Figure 30.11: The Dining Philosophers

two forks, both the one on their left and the one on their right. The
contention for these forks, and the synchronization problems that en-
sue, are what makes this a problem we study in concurrent program-
ming. Here is the basic loop of each philosopher:

while (1) {
think();
getforks();
eat();
putforks();

}

The key challenge, then, is to write the routines getforks() and
putforks() such that there is no deadlock, no philosopher starves
and never gets to eat, and concurrency is high (i.e., as many philoso-
phers can eat at the same time as possible).

Following Downey’s solutions [D08], we’ll use a few helper func-
tions to get us towards a solution. They are:

int left(int p) { return p; }
int right(int p) { return (p + 1) % 5; }

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 15

void getforks() {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}

void putforks() {
sem_post(forks[left(p)]);
sem_post(forks[right(p)]);

}

Figure 30.12: The getforks() and putforks() Routines

When philosopher p wishes to refer to the fork on their left, they
simply call left(p). Similarly, the fork on the right of a philosopher
p is referred to by calling right(p); the modulo operator therein
handles the one case where the last philosopher (p=4) tries to grab
the fork on their right, which is fork 0.

We’ll also need some semaphores to solve this problem. Let us
assume we have five, one for each fork: sem t forks[5].

Broken Solution

We can now attempt our first solution to the problem. Assume we
initialize each semaphore (in the forks array) to have an initial value
of 1. Assume also that each philosopher knows its own number,
which we refer to as p. We can thus write the getforks() and
putforks() routine as follows (Figure 30.12).

The intuition behind this (broken) solution is as follows. To ac-
quire the forks, we simply grab a “lock” on each one: first the one on
the left, and then the one on the right. When we are done eating, we
release them. Simple, no? Unfortunately, in this case, simple means
broken. Can you see the problem that arises? Think about it.

The problem is deadlock. If each philosopher happens to grab the
fork on their left before any philosopher can grab the fork on their
right, each will be stuck holding one fork and waiting for another,
forever. Specifically, philosopher 0 grabs fork 0, philosopher 1 grabs
fork 1, philosopher 2 grabs fork 2, philosopher 3 grabs fork 3, and
philosopher 4 grabs fork 4; all the forks are acquired, and all the
philosophers are stuck waiting for a fork that another philosopher
possesses. We’ll study deadlock in more detail soon; for now, it is
safe to say that this is not a working solution.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



16 SEMAPHORES

A Solution: Breaking The Dependency

The simplest way to attack this problem is to change how forks are
acquired by at least one of the philosophers; indeed, this is how
Dijkstra himself solved the problem. Specifically, let’s assume that
philosopher 4 (the highest numbered one) acquires the forks in a dif-
ferent order. The code to do so is as follows:
void getforks() {

if (p == 4) {
sem_wait(forks[right(p)]);
sem_wait(forks[left(p)]);

} else {
sem_wait(forks[left(p)]);
sem_wait(forks[right(p)]);

}
}

Because the last philosopher tries to grab the right fork before the
left, you can never create a situation where each philosopher grabs
one fork and is stuck waiting for another; thus, the cycle of waiting is
broken. Think through the ramifications of this simple solution, and
convince yourself that it works.

There are other “famous” problems like this one, e.g., the cigarette
smoker’s problem or the sleeping barber problem. Most of them
are just excuses to think about concurrency; look them up if you are
interested in learning more [D08].

30.7 How To Implement Semaphores

Finally, let’s use our low-level synchronization primitives, locks
and condition variables, to build semaphores. It is fairly straightfor-
ward (see Figure 30.13).

As you can see from the figure, it is pretty simple. Just one lock
and one condition variable, plus a state variable to track the value of
the semaphore, is all you need. Study the code for yourself until you
really understand it. Do it!

Curiously, building locks and condition variables out of standard
semaphores is a much trickier proposition. Some highly experienced
concurrent programmers tried to do this in the Windows environ-
ment, and many different bugs ensued [B04]. Try it yourself, and see
if you can figure out why it seems harder to do.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 17

typedef struct __Sem_t {
int value;
pthread_cond_t cond;
pthread_mutex_t lock;

} Sem_t;

// only one thread can call this
void Sem_init(Sem_t *s, int value) {

s->value = value;
Cond_init(&s->cond);
Mutex_init(&s->lock);

}

void Sem_wait(Sem_t *s) {
Mutex_lock(&s->lock);
while (s->value <= 0)

Cond_wait(&s->cond, &s->lock);
s->value--;
Mutex_unlock(&s->lock);

}

void Sem_post(Sem_t *s) {
Mutex_lock(&s->lock);
s->value++;
Cond_signal(&s->cond);
Mutex_unlock(&s->lock);

}

Figure 30.13: Implementing Semaphores with Locks and CVs

30.8 Summary

Semaphores are a powerful and flexible primitive for writing con-
current programs. Some programmers use them exclusively, shun-
ning locks and condition variables, due to their simplicity and utility.

In this chapter, we have presented just a few classic problems
and solutions. If you are interested in finding out more, there are
many other materials you can reference. One great (and free ref-
erence) is Allen Downey’s book on concurrency and programming
with semaphores [D08]. This book has lots of puzzles you can work
on to improve your understanding of both semaphores in specific
and concurrency in general. Becoming a real concurrency expert
takes years of effort; going beyond what you learn in this class is
undoubtedly the key to mastering such a topic.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)



18 SEMAPHORES

References

[B04] “Implementing Condition Variables with Semaphores”
Andrew Birrell
December 2004
An interesting read on how difficult implementing CVs on top of semaphores really is, and the
mistakes the author and co-workers made along the way. Particularly relevant because the group
had done a ton of concurrent programming; Birrell, for example, is known for (among other
things) writing various thread-programming guides.

[CB08] “Real-world Concurrency”
Bryan Cantrill and Jeff Bonwick
ACM Queue. Volume 6, No. 5. September 2008
A nice article by some kernel hackers from a company formerly known as Sun on the real problems
faced in concurrent code.

[CHP71] “Concurrent Control with Readers and Writers”
P.J. Courtois, F. Heymans, D.L. Parnas
Communications of the ACM, 14:10, October 1971
The introduction of the reader-writer problem, and a simple solution. Later work introduced more
complex solutions, skipped here because, well, they are pretty complex.

[D59] “A Note on Two Problems in Connexion with Graphs”
E. W. Dijkstra
Numerische Mathematik 1, 269271, 1959
Available: http://www-m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf
Can you believe people worked on algorithms in 1959? We can’t. Even before computers were
any fun to use, these people had a sense that they would transform the world...

[D68a] “Go-to Statement Considered Harmful”
E.W. Dijkstra
Communications of the ACM, volume 11(3): pages 147148, March 1968
Available: http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
Sometimes thought as the beginning of the field of software engineering.

[D68b] “The Structure of the THE Multiprogramming System”
E.W. Dijkstra
Communications of the ACM, volume 11(5), pages 341346, 1968
One of the earliest papers to point out that systems work in computer science is an engaging
intellectual endeavor. Also argues strongly for modularity in the form of layered systems.

OPERATING

SYSTEMS ARPACI-DUSSEAU



SEMAPHORES 19

[D72] “Information Streams Sharing a Finite Buffer”
E.W. Dijkstra
Information Processing Letters 1: 179180, 1972
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD329.PDF
Did Dijkstra invent everything? No, but maybe close. He certainly was the first to clearly
write down what the problems were in concurrent code. However, it is true that practitioners in
operating system design knew of many of the problems described by Dijkstra, so perhaps giving
him too much credit would be a misrepresentation of history.

[D08] “The Little Book of Semaphores”
A.B. Downey
Available: http://greenteapress.com/semaphores/
A nice (and free!) book about semaphores. Lots of fun problems to solve, if you like that sort of
thing.

[DHO71] “Hierarchical ordering of sequential processes”
E.W. Dijkstra
Available: http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
Presents numerous concurrency problems, including the Dining Philosophers. The wikipedia
page about this problem is also quite informative.

[GR92] “Transaction Processing: Concepts and Techniques”
Jim Gray and Andreas Reuter
Morgan Kaufmann, September 1992
The exact quote that we find particularly humorous is found on page 485, at the top of Section
8.8: “The first multiprocessors, circa 1960, had test and set instructions ... presumably the OS
implementors worked out the appropriate algorithms, although Dijkstra is generally credited with
inventing semaphores many years later.”

[H87] “Aspects of Cache Memory and Instruction Buffer Performance”
Mark D. Hill
Ph.D. Dissertation, U.C. Berkeley, 1987
Hill’s dissertation work, for those obsessed with caching in early systems. A great example of a
quantitative dissertation.

ARPACI-DUSSEAU

THREE

EASY

PIECES

(V0.6.1)


